Introduction
LSS
machine has been tested on various data and compared with real SVM machines in
Weka and R. LSS used various distance measurement formulas, while Weka and R
were left with default settings. How it was tested in R can be seen in the code
snipped below.
#custom
function to measure precision
precision
<- function(predictedLabel, goodLabel){
len<-length(predictedLabel)
tot<-0
for(i in 1:len) {
if
(predictedLabel[i]==goodLabel[i]) {
tot<-tot+1
#print(paste("Positive",
"Predicted--->",predictedLabel[i],goodLabel[i],"<---Actual",
sep = " "))
}else{
#print(paste("Negative","Predicted--->",predictedLabel[i],goodLabel[i],"<---Actual",
sep = " "))
}
}
pct= tot/len*100
print(paste(signif(pct,digits=4),"%",
sep = ""))
}
#load
library
library(e1071)
#load
csv file
myFil<-"AID1608red_train.csv"
myDir<-"C:/Users/Ubaby/Desktop/BIO
DATA/readyToTest/bioassay/"
dir<-paste(myDir,
myFil, sep = "")
data=read.csv(dir,
TRUE,",")
#assign
variables, class label is a name of attribute, but caught as whole column
x
<- data
y
<- Outcome ~ .
#train
model
<- svm(y,x)
#predict
pred
<- predict(model, x)
#measure
precision
precision(data[[length(data)]],pred)
Prediction precision table of LSS,
Weka SVM and R SVM on various biological data
Figure t1. Table of prediction precision results for LSS vs Weka SVM vs R SVM (Source: Ubaby, 2016) |
Figure d1. Diagram of prediction precision vs size of data, results for LSS vs Weka SVM vs R SVM (Source: Ubaby, 2016) |
|
No comments:
Post a Comment