References
Altschul,
F. (2011). Global and Local Sequence Alignment. National Center for
Biotechnology Information, pp.1-35. Available at:
https://www.cs.umd.edu/class/fall2011/cmsc858s/Alignment.pdf [Accessed 12 Oct.
2015].
Ashtawy,
H. and Mahapatra, N. (2012). A Comparative Assessment of Ranking Accuracies of
Conventional and Machine-Learning-Based Scoring Functions for Protein-Ligand
Binding Affinity Prediction. IEEE/ACM Trans. Comput. Biol. and Bioinf.
9(5), pp.1301-1313. Available at:
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6171157&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F8857%2F4359833%2F06171157.pdf%3Farnumber%3D6171157
[Accessed 5 Oct. 2015].
Balani
S.K., Devishree V.S., Miwa G.T., Gan L.S., Wu J.T., Lee F.W. (2005).
"Strategy of utilizing in vitro and in vivo ADME tools for lead
optimization and drug candidate selection". Curr Top Med Chem., 5 (11), pp.1033–8. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/16181128 [Accessed 29
Oct. 2015].
Blaszczyk,
M., Kurcinski, M., Kouza, M., Wieteska, L., Debinski, A., Kolinski, A. and
Kmiecik, S. (2015). Modeling of protein–peptide interactions using the
CABS-dock web server for binding site search and flexible docking. Methods.
Available at: http://arxiv.org/ftp/arxiv/papers/1505/1505.01138.pdf [Accessed
06 Dec. 2015].
Bredensteiner,
E. and Bennett, K. (2000). Duality and Geometry in SVM Classifiers. Department
of Mathematics, 1, pp.1-8. Available at: http://www.robots.ox.ac.uk/~cvrg/bennett00duality.pdf
[Accessed 14 Jan. 2016].
Chinnasamy,
A., Sung, W. And Mittal, A. (2005). Protein Structure and Fold Prediction Using
Tree-Augmented Naïve Bayesian Classifier. Journal of Bioinformatics and
Computational Biology, 03(04), pp.803-819. Available at: http://psb.stanford.edu/psb-online/proceedings/psb04/chinnasamy.pdf
[Accessed 20 Oct. 2015].
Cohen,
J. (2004). Bioinformatics—an Introduction for Computer Scientists. ACM
Computing Surveys., 36(2), pp.123-158. Available at:
http://www.cs.indiana.edu/~predrag/files/cohen_2004.pdf [Accessed 14 Oct.
2015].
Ding,
C. and Dubchak, I. (2001). Multi-class protein fold recognition using support
vector machines and neural networks. Bioinformatics,
17(4), pp.349-358. Available at:
http://ranger.uta.edu/~chqding/papers/protein.pdf [Accessed 06 Dec. 2015].
Fox,
J. and Rawlings, C. (1994). Artificial intellugence and knowledge based systems
in molecular biology*. The Knowledge Engineering Review, 9(03), p.287.
Available at: http://www.academia.edu/17944921/artificial-intelligence_and_knowledge-based_systems_in_molecular-biology
[Accessed 7 Oct. 2015].
Furlanello,
C., Serafini, M., Merler, S. and Jurman, G. (2005). Semisupervised Learning for
Molecular Profiling. IEEE/ACM Trans. Comput. Biol. and Bioinf. 2(2),
pp.110-118. Available at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1438348&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F8857%2F30971%2F01438348
[Accessed 6 Oct. 2015].
Gostner,
R., Baldacci, B., Morine, M. and Priami, C. (2014). Graphical Modeling Tools
for Systems Biology. CSUR, 47(2), pp.1-21. Available at:
https://www.cs.umd.edu/class/fall2011/cmsc858s/Alignment.pdf [Accessed 12 Oct.
2015].
Karp,
P. and Mavrovouniotis, M. (1994). Representing, analyzing, and synthesizing
biochemical pathways. IEEE Expert, 9(2), pp.11-21. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.352&rep=rep1&type=pdf
[Accessed 12 Oct. 2015].
Lounnas,
V., Ritschel, T., Kelder, J., McGuire, R., Bywater, R. and Foloppe, N. (2013).
Current Progress In Structure-Based Rational Drug Design Marks A New Mindset In
Drug Discovery. Computational and Structural Biotechnology Journal,
5(6), pp.1-14. Available at:
http://www.sciencedirect.com/science/article/pii/S2001037014600398 [Accessed 23
Oct. 2015].
Mandal,
S., Moudgil, M. and Mandal, S. (2009). Rational drug design. European
Journal of Pharmacology, 625(1-3), pp.90-100. Available at:
http://www.udel.edu/chem/bahnson/chem645/Rational_drug_design_Abhijit.pdf
[Accessed 22 Oct. 2015].
Marshall
M. (2016). Iris Dataset. UCI Machine
Learning Repository. Irvine, CA: University of California, School of
Information and Computer Science. Available at:
http://archive.ics.uci.edu/ml/datasets/Iris [Accessed 21 Oct. 2015].
McCubbin
C. (2003). Legal issues in bioinformatics. Journal of commercial
biotechnology, 9(3), pp.249-265. Available at: http://commercialbiotechnology.com/article/viewFile/34/30
[Accessed 31 Jan. 2016].
Meller
J. (2001). Molecular Dynamics. Encyclopaedia of life sciences nature
publishing group, 1, pp.1-8. Available at: https://folding.cchmc.org/publications/md_els.pdf
[Accessed 14 Jan. 2016].
McIntosh-Smith,
S., Price, J., Sessions, R. and Ibarra, A. (2014). High performance in silico
virtual drug screening on many-core processors. International Journal of
High Performance Computing Applications, 29(2), pp.119-134. Available at:
http://hpc.sagepub.com/content/early/2014/05/13/1094342014528252.full.pdf
[Accessed 4 Oct. 2015].
Noble,
S. (2003). Support vector machine applications in computational biology. Washington
University Department of Genome Sciences, pp.1-31. Available at:
https://www.ibisc.univ-evry.fr/~dalche/cours/noble_support.pdf [Accessed 10
Oct. 2015].
Rigand,
N. (2008). Biotechnology: Ethical and social debates. OECD International futures programme, pp.1-89. Available at:
http://www.oecd.org/futures/long-termtechnologicalsocietalchallenges/40926844.pdf
[Accessed 30 Jan. 2016].
Schierz A.
(2009). Bioassay Data Set. UCI Machine
Learning Repository. Irvine, CA: University of California, School of
Information and Computer Science. Available at:
http://archive.ics.uci.edu/ml/datasets/PubChem+Bioassay+Data [Accessed 20 Mar.
2016].
Smitha,
M., Mitra, A., Singh, H. (2008). Real Valued Genetic Algorithm Based Approach
for Protein Structure Prediction - Role of Biophysical Filters for reduction of
Conformational Search Space. Third IAPR International Conference on Pattern
Recognition in Bioinformatics, pp.1-20. Available at: http://www.researchgate.net/publication/237550701_Real_Valued_Genetic_Algorithm_Based_Approach_for_Protein_Structure_Prediction_-_Role_of_Biophysical_Filters_for_Reduction_of_Conformational_Search_Space
[Accessed 11 Oct. 2015].
Srivastava,
N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). A
Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15. pp.1931-1958. Available
at: https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf [Accessed 7 Oct.
2015].
Tsay,
J. and Su, S. (2013). An effective evolutionary algorithm for protein folding
on 3D FCC HP model by lattice rotation and generalized move sets. Proteome
Sci, 11(Suppl 1), p.S19. Available at:
http://www.proteomesci.com/content/11/S1/S19 [Accessed 12 Oct. 2015].
Tsumoto,
K., Kamiya, K., Yoshimura, T. (2007). Display of Recombinant Membrane Receptors
on Giant Liposomes: Attempt to Construct a Cell Model with Integrated Membrane
Protein Systems. 978- 1-4244-] 858-9/07/$25.00 ©C2007 IEEE.pp.102-107.
Available at:
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4420834&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4420810%2F4420811%2F04420834.pdf%3Farnumber%3D4420834
[Accessed 15 Oct. 2015].
Van
der Walle, C. (2011). Peptide and protein delivery. London: Academic Press.
Available at:
http://cst.ur.ac.rw/library/Food%20Science%20books/batch1/Peptides%20and%20protein%20delivery.pdf
[Accessed 14 Jan. 2016].
Wang,
J., Urban, L. (2004). The impact of early ADME profiling on drug discovery and
development strategy. Drug Discovery World Fall 2004.pp.73-86. Available
at: http://www.ddw-online.com/media/32/2460/04.fal.the-impact-of-early-adme-profiling-on-drug-discovery-and-development-strategy.pdf
[Accessed 5 Oct. 2015].
Wang,
Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C.,
Chen, K., Zheng, M. and Jiang, H. (2015). In silico ADME/T modelling for
rational drug design. Quarterly Reviews of Biophysics, 48(04),
pp.488-515. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/26328949 [Accessed 21
Oct. 2015].
Wu,
S., Zhang, Y. (2009). Protein Structure Prediction. Bioinformatics: Tools
and Applications, DOI 10.1007/978-0-387-92738-1_11., pp.225-242. Available
at: http://zhanglab.ccmb.med.umich.edu/papers/2009_8.pdf [Accessed 15 Oct.
2015].
Yoruk,
E., Ochs, M., Geman, D. and Younes, L. (2011). A Comprehensive Statistical
Model for Cell Signaling. IEEE/ACM Trans. Comput. Biol. and Bioinf.
8(3), pp.592-606. Available at:
http://cis.jhu.edu/people/faculty/geman/publications/pdf/Geman_IEEETransCBB_2011.pdf
[Accessed 5 Oct. 2015].
No comments:
Post a Comment