References

References

Altschul, F. (2011). Global and Local Sequence Alignment. National Center for Biotechnology Information, pp.1-35. Available at: https://www.cs.umd.edu/class/fall2011/cmsc858s/Alignment.pdf [Accessed 12 Oct. 2015].

Ashtawy, H. and Mahapatra, N. (2012). A Comparative Assessment of Ranking Accuracies of Conventional and Machine-Learning-Based Scoring Functions for Protein-Ligand Binding Affinity Prediction. IEEE/ACM Trans. Comput. Biol. and Bioinf. 9(5), pp.1301-1313. Available at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6171157&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F8857%2F4359833%2F06171157.pdf%3Farnumber%3D6171157 [Accessed 5 Oct. 2015].

Balani S.K., Devishree V.S., Miwa G.T., Gan L.S., Wu J.T., Lee F.W. (2005). "Strategy of utilizing in vitro and in vivo ADME tools for lead optimization and drug candidate selection". Curr Top Med Chem., 5 (11), pp.1033–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16181128 [Accessed 29 Oct. 2015].

Blaszczyk, M., Kurcinski, M., Kouza, M., Wieteska, L., Debinski, A., Kolinski, A. and Kmiecik, S. (2015). Modeling of protein–peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods. Available at: http://arxiv.org/ftp/arxiv/papers/1505/1505.01138.pdf [Accessed 06 Dec. 2015].

Bredensteiner, E. and Bennett, K. (2000). Duality and Geometry in SVM Classifiers. Department of Mathematics, 1, pp.1-8. Available at: http://www.robots.ox.ac.uk/~cvrg/bennett00duality.pdf [Accessed 14 Jan. 2016].

Chinnasamy, A., Sung, W. And Mittal, A. (2005). Protein Structure and Fold Prediction Using Tree-Augmented Naïve Bayesian Classifier. Journal of Bioinformatics and Computational Biology, 03(04), pp.803-819. Available at: http://psb.stanford.edu/psb-online/proceedings/psb04/chinnasamy.pdf [Accessed 20 Oct. 2015].

Cohen, J. (2004). Bioinformatics—an Introduction for Computer Scientists. ACM Computing Surveys., 36(2), pp.123-158. Available at: http://www.cs.indiana.edu/~predrag/files/cohen_2004.pdf [Accessed 14 Oct. 2015].

Ding, C. and Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17(4), pp.349-358. Available at: http://ranger.uta.edu/~chqding/papers/protein.pdf [Accessed 06 Dec. 2015].

Fox, J. and Rawlings, C. (1994). Artificial intellugence and knowledge based systems in molecular biology*. The Knowledge Engineering Review, 9(03), p.287. Available at: http://www.academia.edu/17944921/artificial-intelligence_and_knowledge-based_systems_in_molecular-biology [Accessed 7 Oct. 2015].

Furlanello, C., Serafini, M., Merler, S. and Jurman, G. (2005). Semisupervised Learning for Molecular Profiling. IEEE/ACM Trans. Comput. Biol. and Bioinf. 2(2), pp.110-118. Available at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1438348&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F8857%2F30971%2F01438348 [Accessed 6 Oct. 2015].

Gostner, R., Baldacci, B., Morine, M. and Priami, C. (2014). Graphical Modeling Tools for Systems Biology. CSUR, 47(2), pp.1-21. Available at: https://www.cs.umd.edu/class/fall2011/cmsc858s/Alignment.pdf [Accessed 12 Oct. 2015].

Karp, P. and Mavrovouniotis, M. (1994). Representing, analyzing, and synthesizing biochemical pathways. IEEE Expert, 9(2), pp.11-21. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.352&rep=rep1&type=pdf [Accessed 12 Oct. 2015].

Lounnas, V., Ritschel, T., Kelder, J., McGuire, R., Bywater, R. and Foloppe, N. (2013). Current Progress In Structure-Based Rational Drug Design Marks A New Mindset In Drug Discovery. Computational and Structural Biotechnology Journal, 5(6), pp.1-14. Available at: http://www.sciencedirect.com/science/article/pii/S2001037014600398 [Accessed 23 Oct. 2015].

Mandal, S., Moudgil, M. and Mandal, S. (2009). Rational drug design. European Journal of Pharmacology, 625(1-3), pp.90-100. Available at: http://www.udel.edu/chem/bahnson/chem645/Rational_drug_design_Abhijit.pdf [Accessed 22 Oct. 2015].

Marshall M. (2016). Iris Dataset. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. Available at: http://archive.ics.uci.edu/ml/datasets/Iris [Accessed 21 Oct. 2015].

McCubbin C. (2003). Legal issues in bioinformatics. Journal of commercial biotechnology, 9(3), pp.249-265. Available at: http://commercialbiotechnology.com/article/viewFile/34/30 [Accessed 31 Jan. 2016].

Meller J. (2001). Molecular Dynamics. Encyclopaedia of life sciences nature publishing group, 1, pp.1-8. Available at: https://folding.cchmc.org/publications/md_els.pdf [Accessed 14 Jan. 2016].

McIntosh-Smith, S., Price, J., Sessions, R. and Ibarra, A. (2014). High performance in silico virtual drug screening on many-core processors. International Journal of High Performance Computing Applications, 29(2), pp.119-134. Available at: http://hpc.sagepub.com/content/early/2014/05/13/1094342014528252.full.pdf [Accessed 4 Oct. 2015].

Noble, S. (2003). Support vector machine applications in computational biology. Washington University Department of Genome Sciences, pp.1-31. Available at: https://www.ibisc.univ-evry.fr/~dalche/cours/noble_support.pdf [Accessed 10 Oct. 2015].

Rigand, N. (2008). Biotechnology: Ethical and social debates. OECD International futures programme, pp.1-89. Available at: http://www.oecd.org/futures/long-termtechnologicalsocietalchallenges/40926844.pdf [Accessed 30 Jan. 2016].

Schierz A. (2009). Bioassay Data Set. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. Available at: http://archive.ics.uci.edu/ml/datasets/PubChem+Bioassay+Data [Accessed 20 Mar. 2016].

Smitha, M., Mitra, A., Singh, H. (2008). Real Valued Genetic Algorithm Based Approach for Protein Structure Prediction - Role of Biophysical Filters for reduction of Conformational Search Space. Third IAPR International Conference on Pattern Recognition in Bioinformatics, pp.1-20. Available at: http://www.researchgate.net/publication/237550701_Real_Valued_Genetic_Algorithm_Based_Approach_for_Protein_Structure_Prediction_-_Role_of_Biophysical_Filters_for_Reduction_of_Conformational_Search_Space [Accessed 11 Oct. 2015].

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15. pp.1931-1958. Available at: https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf [Accessed 7 Oct. 2015].

Tsay, J. and Su, S. (2013). An effective evolutionary algorithm for protein folding on 3D FCC HP model by lattice rotation and generalized move sets. Proteome Sci, 11(Suppl 1), p.S19. Available at: http://www.proteomesci.com/content/11/S1/S19 [Accessed 12 Oct. 2015].

Tsumoto, K., Kamiya, K., Yoshimura, T. (2007). Display of Recombinant Membrane Receptors on Giant Liposomes: Attempt to Construct a Cell Model with Integrated Membrane Protein Systems. 978- 1-4244-] 858-9/07/$25.00 ©C2007 IEEE.pp.102-107. Available at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4420834&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4420810%2F4420811%2F04420834.pdf%3Farnumber%3D4420834 [Accessed 15 Oct. 2015].

Van der Walle, C. (2011). Peptide and protein delivery. London: Academic Press. Available at: http://cst.ur.ac.rw/library/Food%20Science%20books/batch1/Peptides%20and%20protein%20delivery.pdf [Accessed 14 Jan. 2016].

Wang, J., Urban, L. (2004). The impact of early ADME profiling on drug discovery and development strategy. Drug Discovery World Fall 2004.pp.73-86. Available at: http://www.ddw-online.com/media/32/2460/04.fal.the-impact-of-early-adme-profiling-on-drug-discovery-and-development-strategy.pdf [Accessed 5 Oct. 2015].

Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M. and Jiang, H. (2015). In silico ADME/T modelling for rational drug design. Quarterly Reviews of Biophysics, 48(04), pp.488-515. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26328949 [Accessed 21 Oct. 2015].

Wu, S., Zhang, Y. (2009). Protein Structure Prediction. Bioinformatics: Tools and Applications, DOI 10.1007/978-0-387-92738-1_11., pp.225-242. Available at: http://zhanglab.ccmb.med.umich.edu/papers/2009_8.pdf [Accessed 15 Oct. 2015].


Yoruk, E., Ochs, M., Geman, D. and Younes, L. (2011). A Comprehensive Statistical Model for Cell Signaling. IEEE/ACM Trans. Comput. Biol. and Bioinf. 8(3), pp.592-606. Available at: http://cis.jhu.edu/people/faculty/geman/publications/pdf/Geman_IEEETransCBB_2011.pdf [Accessed 5 Oct. 2015].

No comments:

Post a Comment